top of page

Novel field-effect passivation for nanostructured Si solar cells using interfacial sulfur incorporati

  • Writer: Home Snpl
    Home Snpl
  • Aug 12, 2023
  • 1 min read


Dae Woong Kim, Jae-Won Song, Young Min Park, Jung-Ho Lee and Tae Joo Park



Abstract

Surface passivation of a nanostructured Si solar cells plays a crucial role in collecting photogenerated carriers by mitigating carrier recombination at surface defect sites. Interface modification by additional sulfur (S) incorporation is proposed to enhance the field-effect passivation performance. Here, we report that simple annealing in a H2S ambient induced additional negative fixed charges at the interface between atomic-layer-deposited Al2O3 and nanostructured Si. Annealing at various temperatures allowed us to control the S concentration and the fixed charge density. The optimized S incorporation at the interface significantly enhanced the negative fixed charge density and the minority carrier lifetime up to ~5.9 × 1012 cm−2 and ~780 μs, respectively. As a result, the internal quantum efficiency was nearly two times higher in the blue response region than that of control cells without S incorporation.

Recent Posts

See All
bottom of page